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ABSTRACT 

Climate change is projected to cause significant changes to global precipitation pat-
terns. To explore how crocodilians and their ecosystems are impacted by variations in 
rainfall, a model was created using a novel adaptation of the Lotka-Volterra equations. 
The model uses a time step of months and includes a crocodilian population, three plant 
species, and eight other animal species. Each year, populations are impacted by preda-
tor-prey interactions and reproduction. Rainfall only impacts the ecosystem through 
the plant populations. This model was validated by running it with Louisiana rainfall 
data from 1970-2018 and comparing the outputs to measured alligator nest count data 
from that time. The model populations followed similar patterns to the nest count data, 
showing that the model accurately describes how rainfall affects the ecosystem. Chang-
es in the amount of rainfall cause the populations to increase or decrease in proportion 
to the change in rainfall. Changes in the timing of rainfall affect the seasonal variation 
of plant populations, which causes animal populations to increase or decrease depend-
ing on whether the plant populations are above or below average when they reproduce. 
Using the results of this model, a management program was designed with specific rec-
ommendations to protect crocodilians and their ecosystems from rainfall variations. 
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INTRODUCTION 

Climate change is projected to have many effects on the earth including higher mean global 
temperatures, increased hurricane severity, and changes in global precipitation patterns 
(Walsh et al., 2014; USGCRP, 2017; National Aeronautics and Space Administration, 2019). 
Changes in global precipitation patterns are likely to have a significant impact on ecosys-
tems because water is essential to life (USGCRP, 2014). The timing and amount of precipita-
tion determine the amount of energy available for use in ecosystems through the growth of 
plants (Zeppel et al., 2014). In the future, precipitation is predicted to be more extreme with 
some regions receiving increased rainfall while others suffer from drought. Also, the timing of 
precipitation is projected to shift, for example, precipitation shifting from summer to winter 
(Walsh et al., 2014).

There are 25 species of crocodilians living in wetlands around the world (Grigg and Kirsh-
ner, 2015). Crocodilians are important natural resources because as apex predators, they are 
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essential for maintaining ecosystem health, and they serve as ecosystem engineers creat-
ing extensive burrows and nest mounds which provide other species habitat and access to 
water (Somaweera et al., 2020). Crocodilians are also important culturally and economi-
cally through tourism and the sale of their hides (Grigg and Kirshner, 2015; Somaweera et 
al., 2020). In the coming years, crocodilians and their ecosystems are likely to be impacted 
by climate change through changes in their habitat, prey availability, and their temperature 
dependent sex determination (Stevenson, 2019), although temperature dependent sex deter-
mination is unlikely to significantly affect crocodilians because they produce females at both 
high and low temperatures (Gonzalez et al., 2019). This project focuses on the effects of vari-
ations in rainfall on the populations of species in crocodilian’s ecosystems. Knowledge of how 
crocodilians may respond to climate change is essential to prepare management programs to 
protect them. The purpose of this experiment was to better understand how crocodilians and 
their ecosystems are impacted by variations in rainfall patterns with the goal of developing a 
management program to keep their ecosystem stable. In this project, the effects of variations 
in the magnitude and timing of rainfall on the ecosystem were explored to better understand 
how changes in rainfall affect all the species through interspecific interactions in the croco-
dilian’s ecosystem.

EXPERIMENTAL METHODS 

For this experiment, a computer model of a crocodilian population in a representative 
general ecosystem in a generic location was created using an adaptation of the Lotka-Volterra 
equations. A general ecosystem is used to get a basic understanding of the effects of variations 

Figure 1. The food web modeled. Arrows show the flow of energy through the ecosystem pointing 
from prey species to their predator species.
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in rainfall on crocodilians as a first step towards creating detailed models of each crocodil-
ian species for accurate and specific management information. A model was used because it 
allows exploration of how variations in rainfall affect ecosystems in a controlled setting and 
without any risk to the species. Additionally, a model allows for the projection of the effects of 
more extreme rainfall patterns than have been observed to date (Gotelli, 2008).

Model

The model was created by writing a code using the Python 3.6.1. language. This model 
includes a crocodilian population, three plant types, and eight other general animal classes, 
for example, fish or birds, as shown in Figure 1 and Table 1. The classes included in the model 
are representative of typical species in aquatic ecosystems inhabited by crocodilians. In this 
work, these classes are referred to as species because each class is modeled as one popu-
lation. In the food web in Figure 1, the species are arranged by trophic level, with arrows 
showing energy flow through the ecosystem (National Geographic, 2019). The food web is 
simplified using a single population for each representative class and simplified predator-prey 
interactions, to give a basic understanding of a generic crocodilian ecosystem. The crocodil-
ian population is modeled with four size classes (SC). Crocodilians cannibalize their young, 
so hatchling crocodilians are a prey source for the adults (Delany et al., 2011). The other 
animal species are modeled as homogenous populations, which are assumed to not canni-
balize themselves. Plants are modeled as biomass in kilograms of plant matter. In Table 1, 
each species individual mass, reproductive rate, hatch rate, and energy needs are shown. The 
animal species’ energy needs were calculated based on the mass of the animals and whether 
they are ectothermic or endothermic (Nagy et al., 1999). The model uses discrete time, with 
time modeled as separate steps, to represent the seasonal impact of different processes on 
each species, with predator-prey interaction occurring each month, animals reproducing at 
different times of the year, and seasonal rainfall variations (Gotelli, 2008).

Model Summary

The Lotka-Volterra equations are the standard way to model predator-prey interactions 
(Gotelli, 2008). For this project, a novel adaptation of the Lotka-Volterra equations was devel-
oped based on Gotelli, 2008. Some limitations of the Lotka-Volterra model include that it 
describes only a two species system, that reproduction occurs each time step, that prey 
species make up a fixed proportion of the predator’s diet, that the system’s energy is constant, 
and that predator populations do not die out immediately without prey (Gotelli, 2008). The 
model created for this experiment is innovative by modeling a complex ecosystem with many 
species, having species reproduce only in specific months as they do in the wild, using a 
dynamic approach to vary predator diets to match prey abundances, including plants to make 
the system’s energy dynamic, and modeling starvation deaths proportional to the amount of 
prey with predators dying out if there is no prey. 

In the model, rainfall only affects the ecosystem through the plant populations. Every 
month the populations are affected by predator-prey interactions, which cause prey to die 
from being consumed and predators to die if their energy needs are not met. Plants reproduce 
every month and animals reproduce only in certain months as shown in Table 2. Once a year 
the crocodilian population ages with some members of each size class moving up to the next. 
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The equations used are described in the Appendix.

Species
Mass  
(grams)

Reproductive 
Rate (young/ 
female)

Hatch Rate 
(percent of 
young that 
are viable)

Mass Based Energy 
Needs (grams/ year/
individual) (calculat-
ed based on Nagy et 
al., 1999)

In: Insects  
(Snallshire and Swash, 2014) 1 300 5% 23

Sm: Small mammals  
(Lee, 2013) 340 8 55% 41040

Cr: Crustaceans  
(Dunover, 2016) 32 350 10% 285

Am: Amphibians  
(Mitchell, 2019) 45 2000 5% 385

Fs: Fish (Indiana Division of 
Fish and Wildlife, 2012) 340 6000 0.7% 2990

Re: Reptiles (Wilson, 2019) 230 10 50% 2090

Br: Birds (Cornell Lab, 2017) 680 8 60% 76320

Lm: Large mammals  
(National Park Service, 2016) 45000 3 83% 737640

Croc: Crocodilians 
(in four Size Classes [SC]) 
(Grigg and Kirshner, 2015)

SC1-500 
SC2-10000 
SC3-30000 
SC4-75000

40 30%

SC1-3280| 
SC2-51840 
SC3-138600 
SC4-312840

Table 1. The animal species in the model. All are homogeneous populations except for the 
crocodilians. Abbreviations given in Column 1 are used in Table 2.

Rainfall Effects on Plants

Plants die if the amount of rainfall received varies from their water needs, either higher or 
lower (Good et al., 2017). Aquatic plants require 3 inches of rain each month; grasses, 4.3 
inches; and shrubs, 4 inches (Davis and Fromme, 2016; University of California, 2019). Plants 
die at a higher rate when there is too little rain than too much (Good et al., 2017). Rainfall also 
affects plant growth, that is their reproduction defined as the addition of biomass to the popu-
lation either through physical growth or production of seeds, which occurs every month. The 
plant growth rate varies by month (Orsenigo et al., 2014) as shown in Table 2. Plant growth is 
limited by a carrying capacity determined by the amount of rainfall in the previous season. 
Although other factors affect plant growth, in this simplified model their effects are assumed 
negligible to focus on the effects of variations in rainfall.
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Predator Prey Interactions

Each month, predator and prey populations interact with one another as shown in Figure 
1, resulting in consumption and starvation deaths. In this simplified model, it is assumed 
that all individual deaths can be accounted for by either starvation or consumption. From 
these interactions, prey dies from being consumed and predators die in proportion to the 
fraction of their energy requirements not met. Crocodilians do not have food preferences and 
consume species in proportion to their abundance (Grigg and Kirshner, 2015); this trait was 
assumed for all predators in this model. For predators that consume multiple species of prey, 
a dynamic approach was taken to divide their energy requirements among their prey species. 
The proportion of the predator’s diet that a certain prey species fulfills varies from month to 
month based on their abundance relative to the other prey species. 

Figure 2. The control simulation, with normal rainfall values as shown in Table 2. Population is 
plotted as a function of time in years. The populations are plotted using a logarithmic scale to show 
all the populations in proportion to one another.
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Season Winter Spring Summer Fall
Month 1 2 3 4 5 6 7 8 9 10 11 12
Normal Rainfall 
(Louisiana averages inches) (Na-
tional Weather Service and Na-
tional Oceanic and Atmospheric 
Administration)

5.23 3.46 3.66 3.33 5.20 6.85 5.63 4.86 5.26 4.90 4.43 4.68

Proportion of Yearly Rain 21.5% 26.75% 27.5% 24.25%

Species Reproducing

(Wilson, 2019; Indiana Division 
of Fish and Wildlife, 2012; Lee, 
2013; Snallshire and Swash, 2014; 
Grigg and Kirshner, 2015; Dun-
over, 2016; National Park Service, 
2016; Cornell Lab, 2017; Mitchell, 
2019)

In

In

Lm

In

Sm

Cr

In

Sm

Cr

Am

Fs

Br

In

Sm

Cr

Am

Fs

Br

In

Sm

Cr

Am

Fs

In

Sm

Am

Re

In

Sm

Re

Croc

In

Sm
In In In

Plant Growth Rate
(Orsenigo et al., 2014)

Table 2.  A year in the model. The normal rainfall is the monthly averages for Louisiana from 1970-
2018 and is used for the control simulation. Animals reproduce in only certain months of the year 
as they do in the wild. Plants grow every month, but their base growth rate varies from season to 
season.

Figure 3. The detrended nest count data and crocodilian hatchling data from the model. The 
detrended nest count data is tripled to allow for easy comparison to the crocodilian hatchling data in 
the plot. The trends in the two data sets are compared for similarity, rather than exact magnitudes, 
as many factors affect the wild populations that are not included in the model. After 1985, the 
crocodilian hatchling population follows a similar pattern to the nest count data.
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Animal Reproduction

Animal reproduction occurs in certain months for each species based on when they repro-
duce in the wild as shown in Table 2. In this simplified model, animal reproduction is limited 
by the species prey populations (National Geographic, 2019), and all other factors affecting 
reproduction like habitat quality are assumed negligible. Reproduction is limited by a carry-
ing capacity, set by the species’ prey populations. The number of possible young can exceed 
the carrying capacity, but the actual number of young never does.

Crocodilian Aging

Once a year the crocodilians age. A small portion of each size class moves up to the next 
one because individuals spend several years in each size class (Grigg and Kirshner, 2015). 
Changes in size classes are limited by the amount of prey in the system because growth 
requires energy.

Control Simulation

To establish a baseline, the simulation was first run with normal rainfall values as shown 
in Table 2. This control simulation was run for 50 years, as shown in Figure 2, where all the 

Figure 4. Scatter plot of the year to year change in the nest count data (x-axis) and the change in the 
model data (y-axis). Points in quadrants I and III are blue and represent years when the nest count 
and model data followed the same trend, and points in quadrants II and IV are purple and represent 
years when they did not follow the same trend. 20 of the 29 points are in quadrants I and III.
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populations are plotted as a function of time. The populations settle in the first decade and 
are arranged based on the food chain, where prey have higher populations than their preda-
tors. Oscillations each year are due to reproduction.

Validation

A model must be validated with data from the real system (Gotelli, 2008). To validate this 
model, it was run using Louisiana rainfall data from 1970 to 2018 (National Centers for Envi-
ronmental Information and National Oceanic and Atmospheric Administration, 2019). This 
simulation was initialized by running it for nine years with normal rainfall to allow the popu-
lations to settle and then with the Louisiana rainfall data. The model results were compared 
to Louisiana alligator nest count data from 1970 to 2018 (Louisiana Department of Wildlife 
and Fisheries, 2019). The nest count data approximates the alligator hatchling population, so 
the crocodilian size class 1 population in the model was used for comparisons. The raw nest 
count values (not shown) have an upward trend reflecting the alligator’s endangered status 
in the 1970s and the significant conservation efforts since then (Louisiana Department of 
Wildlife and Fisheries, 2019). Nest count data is affected by the time of year, time of day, and 
habitat type surveyed (Chabreck, 1966).

Many factors affect wild alligator populations including human interactions, hurricanes, 
temperature, and habitat quality (Lance et al., 2010; Louisiana Department of Wildlife and 
Fisheries, 2019; Grigg and Kirshner, 2015). These factors were not accounted for in the model, 
so the model data cannot be directly compared to the nest count data. To remove the signifi-
cant increase due to conservation from 1970 to 1990, nest count data was detrended by calcu-
lating a five-year running average and subtracting the average from the data, removing the 
overall increasing trend in the nest count data due to conservation to examine the year to 
year variation in the populations. This detrending does not remove the effects of other factors 
on the nest count data. The crocodilian size class 1 population data was also detrended by 
calculating the average population and subtracting that from the yearly average, so the model 
data could be compared to the nest count data as shown in Figure 3. The detrended data 
are centered around zero, as they represent the difference from the average. If the values are 
greater or less than zero, then the population is above or below average, respectively. The 
general pattern of the variations in the nest count data was compared to the variations in the 
crocodilian hatchling (size class 1) population because the nest count data was affected by 
factors not included in the model.

The crocodilian hatchling population in the simulation generally followed the pattern of the 
nest count data as shown in Figure 3, but the correlation is not perfect. For the first 15 years 
of the Louisiana rainfall data, the variations in the model population do not correlate signifi-
cantly with the variations in nest count, likely because those were the first years of taking nest 
count data, so the counts may not be as accurate. From 1985 on, the model population vari-
ations correlate with the variations in the nest count data. When the nest count data is above 
or below average, the model population is also above or below average, well demonstrated in 
1985–1987 and 2004–2009, where the model hatchling population variations are the same as 
the nest count variations.

To get a quantitative understanding of the correlation, for both data sets, the year to year 
difference in the detrended data was calculated and compared as shown in Figure 4, with 
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each point being the change in the nest count data (x-axis) and the change in the model data 
(y-axis) for a specific year. In Figure 4, only data from after 1985 was used since there was 
little correlation between the nest count and model data prior. A positive value means that 
the population increased compared to the previous year and a negative value means that it 
decreased. Points in quadrants I and III represent years when the nest count data and the 
model data both increased or decreased respectively, whereas points in quadrants II and 
IV represent years when the nest count data and the model population followed a different 
pattern. The majority of the points, 20 out of 29, fall in quadrants I and III as shown in Figure 4.

Differences are due to uncertainties in both the data and the model. The nest count data is 
the best population data available for crocodilians, despite its limitations (Chabreck, 1966). 
The model does not perfectly represent the ecosystem as it does not include many factors 
that affect the populations. For example, the model is more sensitive to changes in rainfall 
than the real system. In the validation simulation, the insect population in the model died out 

Figure 5. The populations with 19 years of normal rainfall, five years with a 50% increase in rainfall, 
and normal rainfall for the remainder of the simulation in the same format as Figure 2. In all plots, 
vertical lines indicate when the rain is changed. The populations increase in response to the rainfall 
change and return to normal quickly when the rain returns to normal.
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in 2016. This occurred because there was an unusually large amount of rainfall after several 
months with little, causing the insect’s predator populations to increase, while the insect 
population was low. Given the limitations with the nest count data and the limitations with 
the model, the correlation observed in response to specific rainfall conditions shows that the 
model describes how crocodilian populations respond to changes in rainfall. This model thus 
can be used to explore and predict how crocodilians and their ecosystems may respond to 
new rainfall patterns.

Variations in Rainfall

Once the model was validated it was then run with variations in rainfall. Over 50 simula-
tions were run. First, the simulation was run with variations in the amount of rainfall, with 
normal rainfall for 19 years, then increased or decreased rainfall for 5, 10, 15 years, and finally 
normal rainfall for the rest of the simulation. Many magnitudes were tested ranging from a 

Figure 6. The populations with 19 years of normal rainfall, five years with a 50% decrease in 
rainfall, and normal rainfall for the remainder of the simulation in the same format as Figure 2. The 
populations drop in response to the rainfall change and return to normal quickly when the rain 
returns to normal.
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Figure 7. The percent difference in the populations as a function of the magnitude of the rain change 
when the amount of rainfall is decreased. Overall a linear trend is followed. The colors for the 
species are the same as in Figure 2.

Figure 8. The percent difference in the populations as a function of the magnitude of the rain change 
when the amount of rainfall is increased. Overall there is a quadratic trend. For the crocodilians and 
large mammals, the trend is linear. The format is the same as in Figure 7.
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100% decrease to a 150% increase in rainfall. Then, the simulation was run with variations in 
the timing of rainfall, with normal rainfall for 19 years, then a change in the timing of rainfall 
for 15 years, and finally normal rainfall for the rest of the simulation. With a change in rainfall 
timing, the system receives the same amount of rain each year, but with different amounts 
coming in each season. Many timing changes were tested including the same amount of rain 
each season (25% of the yearly rainfall each season, 25-25-25-25) and having a peak or a drop 
in the amount of rainfall each year (Peak: 40% of the rain in one season and 20% in each of 
the other three seasons, 40-20-20-20; Drop: 10% of the rain in one season and 30% in three 
seasons, 10-30-30-30). Finally, the simulation was run with a change in both the amount and 
timing of rainfall, with normal rainfall for 19 years, then a change in the amount and timing 
of rainfall for 15 years, and finally normal rainfall for the rest of the simulation.

Figure 9. The populations with normal rain for 19 years, 40% of rainfall coming in summer and 
20% in the other seasons for 15 years, and normal rainfall for the rest of the simulation in the same 
format as Figure 2. The populations had only slight changes as rainfall peaks in summer with normal 
rainfall patterns.
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RESULTS AND DISCUSSION 

Variations in the Amount of Rainfall

Simulations were run with variations in the amount of rainfall with 19 years of normal rain-
fall, 5 years with a change in the amount of rainfall between years 19 and 24, and normal 
rainfall for the remainder of the simulation as shown in Figure 5 with a 50% increase in rain-
fall and Figure 6 with a 50% decrease in rainfall. Figures 5 and 6 show the populations plot-
ted as a function of time in years. In Figure 5, all the populations increase when the rainfall 
is increased, and in Figure 6, all the populations decrease when the rainfall is decreased. 
When the rainfall returns to normal, the populations increase or decrease back to their orig-
inal levels.

The amount of rainfall determines the amount of energy in the ecosystem through the 
plant populations, so with increased rainfall there is more energy and with decreased rain-

Figure 10. The populations with normal rain for 19 years, 10% of rainfall coming in summer and 30% 
in the other seasons for 15 years in the same format as Figure 2. The plant and insect populations 
were high for most of the year with a large quick drop. The amphibians and crustaceans died out, 
ending the simulation run, as the insect population was low when they reproduced.
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fall less, and the populations vary directly with the amount of energy in the system. After 
the rainfall amount is changed, populations of species at the bottom of the food chain, like 
insects and amphibians, quickly plateau at their new base population level, which is higher 
or lower than normal depending on the rain change. Populations of species at the top of the 
food chain, like large mammals, do not plateau, rather they continue to increase or decrease 
until the rainfall returns to normal. This occurs because these populations take longer to be 
impacted by the rainfall as they are not directly dependent on the plant populations. There is 
a time lag between when prey species and their predators are affected by the change in rain-
fall. The duration of the rainfall change affects only how much populations at the top of the 
food chain are impacted because these populations continue to increase or decrease over the 
entire period of the rain change, while species lower down the food chain plateau and remain 
at the same level. Once the amount of rainfall returns to normal, the populations also return 
to normal. If the rainfall was decreased, the populations simply increase back to their origi-
nal levels. If the rainfall was increased, the populations decrease back to their original level, 
but some populations, like the crustaceans and amphibians, drop further than their baseline 
before returning to normal. This occurs because their population exceeds a level that can be 
sustained by their prey populations, which have just decreased back to normal, causing them 
to miss out on reproduction.

The magnitude of the increase or decrease in rainfall determines the magnitude of change 
in the populations as shown in Figures 7 and 8. Figures 7 and 8 show the percent difference 
in the populations from normal rainfall as a function of the change in the amount of rainfall. 
With decreased rainfall, the magnitude of the change in the populations increases linearly 
with the magnitude of the rainfall change as shown in Figure 7, but with increased rainfall, 
it increases quadratically as shown in Figure 8. That is, an increased magnitude of change 
in the amount of rainfall has more effect on the populations when the rain is increased than 
decreased. This occurs because the plant carrying capacity is modeled as an exponential 
function, so there is a greater difference in the plant carrying capacity with increased rainfall 
than with decreased rainfall at the same magnitude compared to normal. Species at the top of 
the food chain, like crocodilians, are less impacted by variations in the amount of rainfall than 
species lower down the food chain, like amphibians and plants. When the amount of rain-
fall is increased, species at the top of the food chain show a linear relationship between the 
magnitude of the rain change and change in the populations as shown in Figure 8. Changes 
in the amount of rainfall can have significant effects on the ecosystem leading populations 
to die out with large changes in rainfall. Populations died out when there was a greater than 
80% decrease in rainfall or a greater than 125% increase in rainfall when the rainfall returns 
to normal.

Variations in the Timing of Rainfall

Changes to the timing of rainfall affect the relative magnitudes of the populations and the 
seasonal variations in the plant populations: the plant populations increase in seasons when 
the carrying capacity is high and decrease when low. Some animal populations increase 
while others decrease, based on the seasonal variations of the plant population and when 
the species reproduce. Figure 9 shows the populations with a change in the timing of rainfall 
between years 19 and 34 where 40% of the rainfall comes in summer and 20% of the rainfall 
comes in each of the other seasons (20-20-40-20, last row of Table 3). With the rainfall peaking 
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in summer, the bird population decreases while the large mammal population increases, as 
the birds reproduce in spring and the large mammals reproduce in winter, which is closer to 
the peak in rainfall, and the other populations are relatively unchanged. Figure 10 shows the 
populations with a change in the timing of rainfall between years 19 and 34 where 10% of the 
rainfall comes in summer and 30% of the rainfall comes in each of the other seasons (30-30-
10-30, second row of Table 3). With the rainfall being lowest in summer, the amphibian and 
crustacean populations drop significantly, while the other populations are less affected, 
with the large mammal population decreasing slightly, and the reptile population increas-
ing slightly. In Figure 10, the amphibian and crustacean populations die out because their 
reproduction is reduced by drop in rainfall, coupled with all the species that reproduce in late 
spring and summer having normal reproductive rates. The effects of changes to the timing of 

Figure 11. The populations with normal rain for 19 years, a 50% decrease in rainfall with 40% of 
rainfall coming in summer and 20% in the other three seasons for 15 years, and normal rainfall for 
the rest of the simulation in the same format as Figure 2. All the populations decrease with slight 
variations in their relative magnitude and then return to normal quickly once the rain is back to 
normal.
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rainfall range from mild, as in Figure 9, with populations behaving rather normally, to severe, 
with populations dying out as in Figure 10. Populations die out when prey and predator popu-
lations get out of balance, due to a large difference in plant populations between seasons.

In Table 3, several simulations with changes to the timing of rainfall are summarized, where 
the first column tells the percent of the yearly rainfall that comes in winter, spring, summer, 
and fall, the second column describes the key rainfall pattern for the simulation, and the 
third column tells when and how the plant carrying capacity is affected. The plant carrying 
capacity is determined by the previous season’s rainfall so there is a one-season time lag in 
the response to rainfall. For example, if there is little rain in winter, the plant carrying capacity 
will be low in the spring as shown in Table 3.

Figure 12. The populations with normal rain for 19 years, a 50% increase in rainfall with 40% of 
rainfall coming in summer and 20% in the other three seasons for 15 years in the same format as 
Figure 2, the insect population dies out.
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Simulation Rainfall
Plant  

Carrying 
Capacity

Population
Season Species Reproduces

Winter Spring Summer Fall

10-30-30-30
Drops  

in  
Winter

Drops 
in 

Spring

Increases Large 
mammals Fish

Decreases
Birds,  

Amphibians,  
Crustaceans

Small  
mammals, 

Reptiles, 
Crocodilians

30-30-10-30
Drops 

in  
Summer

Drops 
in 

Fall

Increases Fish, Birds

Small  
mammals, 

Reptiles, 
Crocodilians

Decreases Large 
mammals

Amphibians,  
Crustaceans

40-20-20-20
Peaks  

in  
Winter

Peaks 
in 

Spring

Increases Fish, Birds

Small  
mammals, 

Reptiles, 
Crocodilians

Decreases Large 
mammals

Amphibians, 
Crustaceans

20-20-40-20
Peaks 

in 
Summer

Peaks 
in 

Fall

Increases Large 
mammals Crustaceans

Decreases Fish, Birds, 
Amphibians

Small  
mammals, 

Reptiles, 
Crocodilians

Table 3.  Simulations with a timing change. In general, animal populations increase when the plant 
population is elevated when they reproduce and decrease when the plant population is low when 
they reproduce. There are exceptions: for example, the amphibian population always decreases.

The plant populations increase overall when their carrying capacity is high during spring or 
summer when their base growth rate is higher, and decrease when their carrying capacity is 
high in fall or winter as their base growth rate is lower. Insects are the first animals impacted 
by variations in the timing of rainfall because they reproduce each month, and their popu-
lation follows the plant population pattern. The other animal species are impacted later 
and these populations follow their normal seasonal patterns because they reproduce only 
at certain times of the year. These animal populations increase or decrease depending on 
whether the plant population is above or below average when they reproduce as shown in 
Table 3, where species are placed in the last four columns based on when they reproduce. 
These columns are divided into two rows, with species whose populations increase in the 
upper row and species whose populations decrease in the lower row.

Variations in the Amount and Timing of Rainfall

The ecosystem response to changes in both the amount and timing of rainfall is a hybrid of 
the individual responses as shown in Figures 11 and 12 with the timing of rainfall changed so 
40% of the rainfall comes in summer and 20% of the rainfall comes in the other seasons with 
a 50% decrease (Figure 11) and a 50% increase (Figure 12) in rainfall amount during years 19 
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to 29. In Figure 11, the populations decrease because the rainfall is decreased, but the effects 
of change in the timing of rainfall is reduced as the populations decrease a similar amount. 
This occurs because having decreased rainfall overall reduces the effects of changes in the 
timing of rainfall because the seasonal variation in the plant carrying capacity is reduced as 
shown by the small oscillations in the plant populations in Figure 11. In Figure 12, the popu-
lations increase because the rainfall increased, but the populations increase at different rates 
than without a change in the timing of rainfall. The insect population dies out because of the 
significant increase in all the populations. Increased rainfall overall amplifies the effects of 
changes in the timing of rainfall because the seasonal variation in the plant carrying capac-
ity is increased as shown by the large oscillations in the plant populations in Figure 12. The 
timing of rainfall determines the seasonal variations in the plant populations and the relative 
magnitudes of the populations, while the amount of rainfall determines the magnitude of 
seasonal oscillations and the base population levels. Overall, changes in the timing of rainfall 
have a greater effect on the populations because the relative magnitudes of the populations 

Figure 13. Management program for how humans can help protect crocodilians and their 
ecosystems from variations in rainfall.
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are changed, while with changes in the amount of rainfall, these are maintained. Compared 
to a normal amount of rainfall and this timing change, as shown in Figure 9, the populations 
have smaller oscillations with decreased rainfall as shown in Figure 11 and larger oscillations 
with increased rainfall as shown in Figure 12. Populations die out with increased rainfall and 
timing changes because the ecosystem is unstable due to the large seasonal variation in the 
plant populations.

CONCLUSIONS 

Summary

The results of this simplified model show that variations in rainfall can have significant 
effects on crocodilians and their ecosystem. Changes in the amount of rainfall cause the 
populations to increase or decrease in direct relation to the rain change as shown in Figures 
5, 6, 7, and 8. Changes in the timing of rainfall cause the populations to increase or decrease 
depending on whether the plant population is above or below average when a species repro-
duces, delayed one season from the rainfall pattern as shown in Figures 9 and 10 and Table 
3. Changes in both the timing and amount of rainfall yield a hybrid response of those with 
changes in the amount and timing of rainfall separately as shown in Figures 11 and 12. 

Plants are first impacted by rainfall changes because rainfall determines their carrying 
capacity. Next impacted are animals at the bottom of the food chain, like small mammals and 
amphibians because they rely directly on plants for food as shown in Figures 5, 6, 9, 10, 11, 
and 12. It takes time for species at the top of the food chain, like crocodilians, to be impacted 
because they consume many species of prey and with the predator’s diet shifting based on 
the abundance of the prey populations, all prey populations must be quite different for these 
species’ populations to change. This time lag is very important in the ecosystem response as 
it determines when species are impacted by changes in rainfall. A similar time lag between 
prey and predator populations has been observed in hare and lynx populations, where the 
lynx population follows its prey population, the hare, with a slight delay (Krebs et al., 2001). 
This model produces this common pattern in prey and predator populations, corroborating 
the results. The ecosystem is very sensitive to sudden large changes in rainfall because of 
this time lag. Species lower down the food chain, which are more directly impacted by the 
rain change, are affected before species higher up the food chain. This leads to an imbal-
ance between predator and prey populations, which can be devastating especially when the 
amount of rainfall decreases.

Applications

Models, like this one, have the unique potential to explore many future climate scenarios 
that would otherwise be impossible with field studies. More models need to be developed 
and validated to prepare for climate change effects on ecosystems.

Extreme and chaotic variations in rainfall are probable in the near future (Walsh et al., 
2014). Crocodilians and their ecosystems are apt to be adversely affected by climate change 
and its effects on rainfall patterns. Chaotic rainfall patterns will likely cause their ecosystems 
to become unstable because the ecosystem is sensitive to sudden changes in rainfall. Extreme 
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periods of drought would be harmful to crocodilians because as large predators they are 
greatly affected by extended periods of low rainfall. 

The effects of climate change have the potential to be disastrous for crocodilians and their 
ecosystems. It is important to slow or prevent climate change before ecosystems are destroyed 
and biodiversity is lost. Additionally, it is important to prepare for the coming disruption 
that ecosystems face from climate change by developing and testing management programs 
to protect ecosystems from becoming unstable due to abnormal rainfall patterns. Proper 
management response will become increasingly important as rainfall patterns are projected 
to become more extreme and chaotic. 

From the results of this experiment, management recommendations were developed 
(Figure 13) indicating how human interactions can help the ecosystem respond to variations 
in rainfall. In general, it is important to monitor rainfall patterns and keep track of how they 
compare to a region’s norms. The management plan gives recommendations based on how 
the rainfall pattern varies from normal, using management actions such as hunting, water 
conservation, and captive release of farm raised individuals to aid the populations. For exam-
ple, if the timing of rainfall is changed so that rainfall peaks in winter, the recommendations 
are to aid the plant populations with reduced grazing and logging to keep their populations 
from decreasing overall, increase farm release of birds, amphibians, crustaceans, fish, small 
mammals, reptiles, and crocodilians, species that reproduce when the plant populations are 
low, maintain hunting levels so predator populations do not get out of proportion with prey 
populations, and conserve water in spring and summer to reduce the seasonal variation in 
the plant populations. The practices outlined in these management recommendations have 
the potential to help keep the crocodilian ecosystem stable face of changing rainfall patterns. 
More research, though, is needed to create species specific management recommendations 
and to determine the efficacy of the recommendations presented here. Modeling techniques 
can help prepare management programs for future threats and may prove quite valuable 
in protecting crocodilians and all creatures from climate change because a management 
program can already in place allowing efforts to aid the populations to begin immediately 
after unusual rainfall patterns are observed.

Future Directions

The results of a model must be interpreted with regards to the assumptions of the model 
(Gotelli, 2008). This model represents a generalized crocodilian ecosystem including broad 
classes of prey with the goal of understanding generally how crocodilians are affected by vari-
ations in rainfall. Models for specific crocodilian species and ecosystems should be developed 
to more accurately represent a system and get more detailed management insights. A major 
assumption of this model is that rainfall only affects the ecosystem through the plant popula-
tions. In reality, rainfall also affects the quality and quantity of freshwater habitats and croco-
dilian nesting success (Eversole et al., 2013; Grigg and Kirshner, 2015). The effects of rainfall 
on aquatic habitat should be accounted for in the model. For example, if water levels were 
decreased, aquatic species would have a lower carrying capacity. This model also assumes 
that species do not adapt in response to changes in rainfall. In the future, this model should 
also include species adaptations; for example, plant species becoming more drought resis-
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tant or animal species changing their timing of reproduction. These additions to the model 
would allow for a better understanding of all the effects of variations in rainfall and should 
be accounted for when designing management programs. Field studies and theoretical tech-
niques should be combined to design and validate models. Data from the field such as how 
rainfall affects species, what factors most significantly affect species reproduction rates, and 
the ratio of populations between trophic levels, can improve the accuracy of models and high-
light important variables to include. Additionally, accurate population data from all species in 
the ecosystem should be collected over many years and be used to further validate the model. 
Conservation is a pressing issue that should be addressed using all tools available by combin-
ing field work and modeling.
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APPENDIX-MODEL EQUATIONS

For the model created in this experiment, a novel adaptation of the Lotka-Volterra model, 
the base predator-prey interaction model, was used. Each month the populations are 
impacted by rainfall, predator-prey interaction, and reproduction. Energy enters the ecosys-
tem only through plant growth which is dependent rainfall. Rainfall only affects the ecosys-
tem through the plant populations. The equations used in the model are described here with 
the variables used defined in Table A-1.

Variable Definition Variable Definition

P 
(Name)

Population of Name 
Plants-pl; Prey-vt; Predators-me CO Conversion Coefficient

D Plant Death Rate DF Percent of Predator’s Diet Prey Species 
Fulfills

RN Rain Needed by Plant Species M Mass of Individual

RR Rain Received Q Reproductive Rate

G Plant Growth Rate X Percent of Population Reproducing

RA Rainfall Average CC Prey Determined Carrying Capacity

CU Consumption Rate H Hatch Rate

F Feeding Limit A Aging Rate

Table A-1.  Variables used in the model equations in order of use.

Rainfall Effects on Plants

Plants die if the rainfall varies from their water needs, whether there is too little or too much 
rain as shown in Equation 1 (Good et al., 2017). Plants die at a higher rate when there is too 
little rain than when there is too much rain. The amount of plant deaths is directly propor-
tional to the difference between the amount of rain received and the amount of rain needed.

Rainfall also affects plant growth, their reproduction, which occurs every month. Plant 
growth is modeled using the logistic growth equation, where exponential growth is limited 
by a carrying capacity (Gotelli, 2008). Plant growth is governed by a growth rate and a carry-
ing capacity, both depend on the amount of rainfall as shown in Equation 2. The base growth 
rate varies seasonally as shown in Table 2 (Orsenigo et. al, 2014), but is also dependent on the 
current month’s rainfall. There is a set minimum growth rate when there is no rainfall, but 
with rainfall the growth rate increases steadily until the rainfall is about 1.5 times the plants’ 
water needs, where it levels off (Good et al., 2017). This was modeled using a variation of the 
exponential function, e-x. The carrying capacity (the last term in Equation 2) limits the actual 
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amount of plant growth based on the previous season’s rainfall. The carrying capacity has a 
set minimum of 107.6 kilograms of plant matter when there is no rainfall. A rainfall average is 
calculated in each of the four seasons and is compared to the water needs of the plant species. 
This value is used to determine the next season’s carrying capacity.

Predator Prey Interactions

Each month, predator and prey populations interact with one another as shown in Figure 
1, resulting in consumption and starvation deaths. In consumption, prey die from being 
consumed by predators as shown in Equation 3. In starvation, the predators die in proportion 
to the fraction of their energy requirements that are not met as shown in Equation 4, where all 
predators automatically die to represent the scenario if no prey is consumed with individuals 
added back to the population, do not die, for every unit of prey consumed. These processes 
are described with three parameters: consumption rate, conversion rate, and feeding limit; 
each interaction has a unique set of parameters (Gotelli, 2008). The consumption rate limits 
the amount of prey consumed based on the time required for the predator to capture the prey. 
The conversion coefficient defines the amount of prey that must be consumed by individual 
predators so they do not die of starvation. The feeding limit defines the maximum amount of 
prey the predators consume based on their energy needs.

The feeding limits were calculated each month by determining the amount of prey the 
predators need to consume based on their energy requirements as shown in Table 1. Many of 
the predators consume multiple species of prey, so their energy requirements are split among 
their prey species using a dynamic approach, assuming that predators do not have food pref-
erences. The proportion of a predator’s energy requirements that a certain prey species fulfills 
varies each month based on their relative abundance to the other prey species. The rela-
tive abundance of prey species is determined by comparing the total mass of a specific prey 
species to the total mass of all prey species for that predator as shown in Equation 5. The 
feeding limit for the specific predator and prey interaction is determined by multiplying the 
proportion of the energy requirements that the prey species fulfills with the total feeding limit.
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Animal Reproduction

Animal reproduction occurs in certain months for each species as shown in Table 2. Animal 
reproduction is modeled using the logistic growth equation, where exponential growth is 
limited by the resources in the system as shown in Equation 6 (Gotelli, 2008). In Equation 6, 
the population is multiplied by one half because only the females reproduce. For species that 
reproduce over several months, like amphibians, the population used is from the first month 
of their reproductive season because hatchlings are not reproductively mature. The repro-
ductive rate, shown in Table 1, is the number of young per adult female, without limitations 
on population growth. The population growth is then limited by a carrying capacity based 
on the prey populations as shown in Equation 7, where the prey populations are multiplied 
by the conversion rate to determine how many predators can be sustained, the proportion 
of the predator’s diet that prey species fulfills, and 0.2 because reproduction requires more 
energy than survival. The hatch rate, shown in Table 1, determines how many of the young are 
successfully added to the population depending on a species parental care habits.

Crocodilian Aging

Once a year the crocodilians age where small portion of each size class moves up to the next 
one. Aging is limited by the amount of prey in the system, and because growth requires more 
energy than what is needed to survive, aging is limited further than reproduction as shown 
in Equation 8.


